

VIBRATION OF TWISTED AND CURVED CYLINDRICAL PANELS WITH VARIABLE THICKNESS

T. SAKIYAMA, X. X. HU, H. MATSUDA AND C. MORITA

Department of Structural Engineering, Faculty of Engineering, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8131, Japan. E-mail: sakiyama@st.nagasaki-u.ac.jp

(Received 8 May 2001, and in final form 5 November 2001)

A numerical procedure, with an exact strain-displacement relationship of twisted and curved cylindrical panels having variable thickness derived by considering the Green strain tensor on general shell theory, is presented using the principle of virtual work and the Rayleigh-Ritz method with algebraic polynomials as in-plane and transverse displacement functions. The accuracy and applicability of the procedure are verified by comparing the present results with previous experimental and theoretical results for several panels. The effects of variation ratio of thickness in chordwise and lengthwise directions, twist, and curvature both in two directions aforementioned on vibrations of cylindrical panels are studied in detail, and typical vibration mode shapes are plotted to demonstrate the effects.

1. INTRODUCTION

Shells have become very important structure components in many engineering applications such as wings, helicoidal fan blades and bodies of aircraft in aerospace, blades of turbo machines in machinery engineering, and spheroidal, paraboloidal and toroidal shells in civil engineering. It is impossible to obtain exactly theoretical solutions by any method because shells usually have a complicated profile and their status can only be expressed by differential or integral formulas approximately, and increasing applications and high performance in engineering are demanded, which are the reasons why many researchers are interested in the study on dynamics of shells.

There were many outstanding researches for the vibrations of shells introduced in references [1-3] crowded with the available literature. Leissa and their co-operators are representatives of researchers on this problem in the 1980s. As a physical modal type of rotating turbo machinery blades, twisted plates, shallow cylindrical shells, doubly curved shallow shells, and variable thickness and curvature shells were studied [4-10]. It is worth noting the work done by Liew, Lim and their coworkers since 1990s. By introducing *pb*-2 shape functions as displacement functions which accommodate various boundary conditions easily, twisted trapezoidal plates, cantilevered rectangular shallow shells with variable thickness were studied in detail by first order, higher order and other theories [11-21] where the effects of parameters, such as twist and variable thickness, and various boundary constraints on vibration characteristics are studied, and other studies on this topic can be seen from a review [3]. It is known that most of the shells aforementioned

0022-460X/02/\$35.00

were assumed to be shallow shells with a rectangular planform, therefore, the numerical analysis procedures were inadequate for vibration analysis of deep shells, and there were a few researches related to twisted deep shells with variable thickness. Establishing an exact strain-displacement relationship for shells based on general shell theory and formulating governing equations of vibration by the principle of virtual work and the Rayleigh-Ritz method, curved and twisted plates, twisted cylindrical panels, and curved and twisted cylindrical panels were studied, some specimens were tested and the comparison between theoretical and experimental results was also carried out [22–25]. It is noted that the numerical analysis procedure is based on general shell theory, therefore, there is no limitation of application.

For the purpose of forwarding the work [25], in this paper, an exact strain-displacement relationship for twisted and curved cylindrical panels is adopted, and the eigenvalue equation for free vibrations of twisted and curved cylindrical panels with variable thickness is formulated by the principle of virtual work and the Rayleigh-Ritz method with displacement functions expressed as general algebraic polynomials, where the vectors of two displacement components in plane are not mutual. By the parametric study, the vibration characteristics represented by vibration frequency parameters and mode shapes of the panels affected by the parameters, such as variation ratios of thickness and curvature both in chordwise and lengthwise directions, and twist, are studied.

2. STRAIN FORMULAS

A twisted and curved cylindrical thin panel with variable thickness is shown in Figure 1, where two co-ordinate systems are introduced. In a right-hand co-ordinate system (x, y, z')with unit vectors \mathbf{i}_1 , \mathbf{i}_2 and \mathbf{i}_3 , where x is a curvilinear axis in a lengthwise direction and a twisting center axis, z'-axis takes in a radial direction where the cylindrical arc is divided into two parts equally. In another cylindrical co-ordinate system, θ is an angle measured from the z'-axis and s-axis takes in a circumferential direction on the midsurface of the panel. Parameters Ω_1 , r, l and b are a central angle, the radius of a reference, a length, an arc length on a cross-section perpendicular to the x-axis respectively. h is a two-dimensional function denoting the thickness in the normal of a reference, k is a twist angle per unit length around the x-axis, 1/R and Ω_2 express a curvature of the x-axis ($\Omega_2 = l/R$), e is a distance between the origins O and O_1 of the two co-ordinate systems, and z-axis is perpendicular to the midsurface with the outward direction considered positive. ϕ is an angle between the y-axis and the radial direction of the x-axis at a fixed end of the panel.

Figure 1. A twisted and curved cylindrical panel with variable thickness.

Selecting a midsurface of the panel as a reference, an arbitrary point outside the midsurface is considered after deformation, which can be expressed by a position vector \mathbf{r} as

$$\mathbf{r} = \mathbf{r}_{c}^{(0)} + z \frac{1}{B} (-ek\sin\theta \mathbf{i}_{1} + A\sin\theta \mathbf{i}_{2}A\cos\theta \mathbf{i}_{3}) + \mathscr{U}$$
$$= \mathbf{r}^{(0)} + \mathscr{U}, \tag{1}$$

where $\mathbf{r}_{c}^{(0)}$ is a position vector corresponding to the point on the midsurface, z denotes the position of the point in normal direction referred to the midsurface, $\mathbf{r}^{(0)}$ is a position vector of the point before deformation and \mathcal{U} is the displacement vector whose components are defined as follows if the thin panel is considered [25]:

$$U = \left(1 + z\frac{1}{B}h_{4}\right)u - z\frac{ek}{B^{3}r}h_{3}v - z\frac{1}{B^{2}}\frac{\partial w}{\partial x} + z\frac{k}{B^{2}r}(e\cos\theta - r)\frac{\partial w}{\partial\theta},$$

$$V = -z\frac{k}{B}\left[1 + \frac{ek^{2}}{B^{2}R}p\sin\theta(e\cos\theta - r)\right]u + \left\{1 + z\frac{1}{Br}\left[A + \frac{ek^{2}}{B^{2}}h_{3}(e\cos\theta - r)\right]\right\}v + z\frac{k}{B^{2}}(e\cos\theta - r)\frac{\partial w}{\partial x} - z\frac{1}{r}\left[1 + \frac{k^{2}}{B^{2}}(e\cos\theta - r)^{2}\right]\frac{\partial w}{\partial\theta},$$

$$W = w,$$

$$(2)$$

where u, v and w denote the displacements of a point on the midsurface in $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 directions which are defined as follows:

$$\mathbf{a}_1 = \frac{\partial \mathbf{r}_c^{(0)}}{\partial x}, \qquad \mathbf{a}_2 = \frac{\partial \mathbf{r}_c^{(0)}}{r\partial \theta}, \qquad \mathbf{a}_3 = \frac{\mathbf{a}_1 \times \mathbf{a}_2}{|\mathbf{a}_1 \times \mathbf{a}_2|}, \tag{3}$$

and the quantities in the above equations and others are defined in Appendix A.

By partial differentiation of the vectors before and after deformation with respect to $x, r\theta$ and z, the covariant base vectors \mathbf{g}_i (i = 1, 2, 3) and \mathbf{G}_j (j = 1, 2, 3) are obtained, and the Green strain tensors f_{ij} (i, j = 1, 2, 3) with respect to general curvilinear co-ordinate system can be given by

$$2f_{ij} = \mathbf{G}_i \cdot \mathbf{G}_j - \mathbf{g}_i \cdot \mathbf{g}_j \quad (i, j = 1, 2, 3).$$

$$\tag{4}$$

Due to a demand of elastic theory, herein a local orthogonal co-ordinate system (ξ , η , ζ) to the point is introduced, and the strains ε_{ij} ($i, j = \xi, \eta, \zeta$) are presented as follows:

$$\varepsilon_{\xi\xi} = \frac{1}{F} \mathbf{Z} \mathbf{G}_{x1} \mathbf{U} + \frac{1}{2} (\mathbf{G}_{x2} \mathbf{U})^{\mathrm{T}} (\mathbf{G}_{x2} \mathbf{U}), \qquad \varepsilon_{\eta\eta} = \frac{1}{F} \mathbf{Z} \mathbf{G}_{\theta 1} \mathbf{U} + \frac{1}{2} (\mathbf{G}_{\theta 2} \mathbf{U})^{\mathrm{T}} (\mathbf{G}_{\theta 2} \mathbf{U}),$$
$$\gamma_{\xi\eta} = \frac{1}{F} \mathbf{Z} \mathbf{G}_{x\theta} \mathbf{U} + (\mathbf{G}_{x2} \mathbf{U})^{\mathrm{T}} (\mathbf{G}_{\theta 2} \mathbf{U}), \qquad \varepsilon_{\zeta\zeta} = 0, \qquad \gamma_{\xi\zeta} = 0, \qquad \gamma_{\eta\zeta} = 0, \qquad (5)$$

where matrices Z, G_{x1} , $G_{\theta 1}$, $G_{x\theta}$, G_{x2} , $G_{\theta 2}$ and U are expressed as

$$\mathbf{Z}^{\mathrm{T}} = \begin{bmatrix} 1 \\ z/l \\ z^2/l^2 \end{bmatrix}, \quad \mathbf{G}_{x1} = \begin{bmatrix} x_1 \mathbf{G}_{1,i} \\ x_1 \mathbf{G}_{2,i} \\ x_1 \mathbf{G}_{3,i} \end{bmatrix}, \quad G_{\theta 1} = \begin{bmatrix} \theta_1 \mathbf{G}_{1,i} \\ \theta_1 \mathbf{G}_{2,i} \\ \theta_1 \mathbf{G}_{3,i} \end{bmatrix}, \quad G_{x\theta} = \begin{bmatrix} x_\theta \mathbf{G}_{1,i} \\ x_\theta \mathbf{G}_{2,i} \\ x_\theta \mathbf{G}_{3,i} \end{bmatrix}, \quad (i = 1, \dots, 12),$$

$$\mathbf{G}_{x2} = \begin{bmatrix} 0 & 0 & -h_2 & 0 & 0 & \frac{ek}{B^2 r} h_1 & 0 & 0 & 0 & \frac{1}{B} & -\frac{k}{Br} e_2 & 0 \end{bmatrix},$$
$$\mathbf{G}_{\theta 2} = \begin{bmatrix} 0 & 0 & \frac{k}{B} h_3 & 0 & 0 & -\frac{A}{Br} & 0 & 0 & 0 & 0 & \frac{1}{r} & 0 \end{bmatrix},$$
$$\mathbf{U}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{r\partial \theta} & u & \frac{\partial v}{\partial x} & \frac{\partial v}{r\partial \theta} & v & \frac{\partial^2 w}{\partial x^2} & \frac{\partial^2 w}{r^2 \partial \theta^2} & \frac{\partial^2 w}{r\partial x \partial \theta} & \frac{\partial w}{\partial x} & \frac{\partial w}{r\partial \theta} & w \end{bmatrix}, \tag{6}$$

the non-zero elements in matrices G_{x1} , $G_{\theta 1}$ and $G_{x\theta}$ are defined in Appendix B.

3. EIGENVALUE EQUATION FOR FREE VIBRATION

The general form of the principle of virtual work for the free vibration of twisted and curved cylindrical thin panels [25] is

$$\iiint_{\mathscr{A}} (\sigma_{\xi\xi} \delta \varepsilon_{\xi\xi} + \sigma_{\eta\eta} \delta \varepsilon_{\eta\eta} + \tau_{\xi\eta} \delta \gamma_{\xi\eta}) F \, \mathrm{d}x \, r \, \mathrm{d}\theta \, \mathrm{d}z - \iiint_{\mathscr{A}} \rho \omega^2 \mathscr{U} \delta \mathscr{U} F \, \mathrm{d}x \, r \, \mathrm{d}\theta \, \mathrm{d}z = 0.$$
(7)

Substituting stress-strain relationship, strain-displacement relationship and displacements into equation (7), integrating with respect to z and neglecting the terms containing z^i where *i* is > 3, it can be rewritten as

$$\iint_{\mathscr{S}} \delta \mathbf{U}^{\mathrm{T}} \left(\mathbf{G}_{x1}^{\mathrm{T}} \mathbf{D} \mathbf{G}_{x1} + {}_{v} \mathbf{G}_{x1}^{\mathrm{T}} \mathbf{D} \mathbf{G}_{\theta 1} + {}_{v} \mathbf{G}_{\theta 1}^{\mathrm{T}} \mathbf{D} \mathbf{G}_{x1} + \mathbf{G}_{\theta 1}^{\mathrm{T}} \mathbf{D} \mathbf{G}_{\theta 1} + \frac{1 - v}{2} \mathbf{G}_{x\theta}^{\mathrm{T}} \mathbf{D} \mathbf{G}_{x\theta} \right) \mathbf{U}_{\mathrm{B}}^{1} \mathrm{d}x \, r \, \mathrm{d}\theta$$
$$- \iint_{\mathscr{S}} \rho \omega^{2} \left\{ \left[B^{2} + k^{2} \left(e \cos \theta - r \right)^{2} \right] u \delta u + k \left(e \cos \theta - r \right) \left(v \delta u + u \delta v \right) + v \delta v + w \delta w \right\} Bh \, \mathrm{d}x \, r \, \mathrm{d}\theta = 0, \tag{8}$$

 $+ v\delta v + w\delta w \} Bh \, \mathrm{d}x \, r \, \mathrm{d}\theta = 0,$

where matrix **D** is defined by

$$\mathbf{D} = \int_{-h/2}^{h/2} \frac{E}{1 - v^2} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} \frac{1}{1 + z/l\bar{p}_1} dz \doteq \int_{-h/2}^{h/2} \frac{E}{1 - v^2} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} \left(1 - \frac{z}{l}\bar{p}_1\right) dz$$
$$= D_0 \begin{bmatrix} \frac{12}{h_0^2} \alpha & -\frac{\bar{p}_1}{l^2} \alpha^3 & \frac{1}{l^2} \alpha^3 \\ & \frac{1}{l^2} \alpha^3 & 0 \\ Sym. & 0 \end{bmatrix}, \quad D_0 = \frac{Eh_0^3}{12(1 - v^2)}, \ h = h_0 \ \alpha, \ \bar{p}_1 = p_1 1. \tag{9}$$

E, v and ρ are Young's modulus, the Poisson ratio and a specific weight of a material, respectively, ω is an angular frequency, and h_0 and α are a reference thickness and a function denoting the variation ratio of thickness.

With the purpose of parametric study, the following non-dimensional quantities are introduced.

$$\bar{x} = \frac{x}{l}, \quad \bar{u} = \frac{u}{l}, \quad \bar{v} = \frac{v}{l}, \quad \bar{w} = \frac{w}{l}, \quad \bar{R} = \frac{R}{l}, \quad \bar{r} = \frac{r}{l}, \quad \bar{e} = \frac{e}{r}, \quad K = kl.$$
 (10)

Although it is possible to define a non-linear thickness function $h(\bar{x}, \theta)$, herein, considering the complicated profile of a panel having a twist and double curvature, which is defined as a linear variation of thickness in two directions:

$$h(\bar{x},\theta) = h_0 \left[1 \cdot 0 - (1 \cdot 0 - \delta_{\bar{x}}) \bar{x} - (1 \cdot 0 - \delta_{\theta}) \left(\frac{1}{2} + \frac{\theta}{\Omega_1} \right) \right],\tag{11}$$

where $\delta_{\bar{x}}$ and δ_{θ} are variation ratios in lengthwise and chordwise directions. Because of a thickness $h(\bar{x}, \theta) \ge 0$, the two variation ratios would obey the following:

$$\delta_{\bar{x}} + \delta_{\theta} \ge 1.0. \tag{12}$$

The Rayleigh-Ritz method, with two-dimensional polynomial functions satisfying the geometric boundary conditions $\bar{u} = 0$, $\bar{v} = 0$, $\bar{w} = 0$ and $\partial \bar{w} / \partial \bar{x} = 0$ at $\bar{x} = 0$ given as follows, is used:

$$\bar{u} = \sum_{i=1}^{N_u} \sum_{j=0}^{M_u} a_{ij} \bar{x}^i \theta^j, \qquad \bar{v} \sum_{k=1}^{N_v} \sum_{l=0}^{M_v} b_{kl} \bar{x}^k \theta^l, \qquad \bar{w} = \sum_{m=2}^{N_{\bar{w}}} \sum_{n=0}^{M_{\bar{w}}} c_{mn} \bar{x}^m \theta^n,$$
(13)

where a_{ij} , b_{kl} and c_{mn} are unknown coefficients, N_i and M_i $(i = \bar{u}, \bar{v}, \bar{w})$ are the maximum powers of \bar{x} and θ in the displacement polynomial functions, respectively.

Substituting equations (10), (11) and (13) into equation (8) and integrating, the eigenvalue equation for free vibration of a twisted and curved cylindrical panel with variable thickness is yielded,

$$\begin{bmatrix} \mathbf{A}_{11} - \lambda^2 \mathbf{B}_{11} & \mathbf{A}_{12} - \lambda^2 \mathbf{B}_{12} & \mathbf{A}_{13} \\ & \mathbf{A}_{22} - \lambda^2 \mathbf{B}_{22} & \mathbf{A}_{23} \\ Sym. & \mathbf{A}_{33} - \lambda^2 \mathbf{B}_{33} \end{bmatrix} \mathbf{q} = 0,$$
(14)

where \mathbf{A}_{ij} and \mathbf{B}_{ij} (i, j = 1, 2, 3) are sub-stiffness and sub-mass matrices of the panel, respectively, vector \mathbf{q} composed by unknown coefficients a_{ij} , b_{kl} and c_{mn} are related to vibration modes, and λ is a non-dimensional frequency parameter defined as

$$\lambda^2 = \frac{\rho \, h_0 \, \omega^2 \, l^4}{D_0}.$$
 (15)

4. NUMERICAL RESULTS AND DISCUSSIONS

In the present numerical procedure, the maximum powers of \bar{x} and θ in in-plane and transverse displacement polynomial functions, and integral points with respect to \bar{x} and θ are the two factors which govern the accuracy of the approximate solutions. As a matter of experience, two-dimensional Gauss-Legendre numerical integral scheme with 16 points is enough. The emphasis is the effect of the maximum powers of \bar{x} and θ in the displacement polynomial functions on the convergence of the solutions. The vibration characteristics of twisted and curved cylindrical panels with variable thickness are represented by the first eight frequency parameters λ and some corresponding mode shapes in this paper. The present results compared with the previous experimental and theoretical results are carried out in order to verify the present procedure, and numerous models with different geometric parameters, such as twist, curvature, are studied by the present procedure. Therefore, the effects of twist, curvature and a variation ratio of thickness in chordwise and lengthwise directions on the vibration characteristics are revealed. The Poisson ratio v of isotropic materials is 0.3 in here.

4.1 CONVERGENCE STUDIES

A model with a severe profile, such as a large twist, large curvature in both chordwise and lengthwise directions and a special variation ratio of thickness, is taken to be considered in the convergence of the first ten frequency parameters λ , namely, $\Omega_1 = 60^\circ$, $\Omega_2 = 90^\circ$, $K = 60^\circ$, $\phi = 0^\circ$, an aspect ratio l/b = 2, a thickness ratio $b/h_0 = 25$ and two cases of $\delta_{\bar{x}} = 1.00$, $\delta_{\theta} = 0.00$ and $\delta_{\bar{x}} = 0.00$, $\delta_{\theta} = 1.00$. The same number of terms and the same maximum powers of \bar{x} and θ in the displacement polynomial functions are used in the two cases. For the in-plane displacements \bar{u} and \bar{v} , the same maximum powers of \bar{x} and θ are assumed, or $N_{\bar{u}} = N_{\bar{v}}$ and $M_{\bar{u}} = M_{\bar{v}}$. The number of terms in the displacement polynomial functions can be obtained by the parameters N_i , M_i ($i = \bar{u}, \bar{v}, \bar{w}$) in equation (13).

In Table 1, the seven different sets of the parameters N_i , M_i $(i = \bar{u}, \bar{v}, \bar{w})$ are cited to demonstrate how the first ten frequency parameters λ vary with the maximum powers of \bar{x} and θ , or the number of terms in the three displacement polynomial functions. It can be seen that the results greatly differ for the cases where there are almost the same number of terms in \bar{u}, \bar{v} and \bar{w} , such as (48/48/63) and (49/49/63), but the different maximum powers of \bar{x} and θ , such as (6,7;6,7;8,8) and (7,6;7,6;8,8). The lower frequency parameters λ show better convergence with the number of terms than the higher ones, which means that it is not necessary for lower frequency parameters to use a large number of terms in the displacement polynomial functions, otherwise, a large amount of calculations will produce calculation error and accumulating errors. Therefore, it is important for the convergence and accuracy to optimize the combination of the maximum powers of \bar{x} and θ in the displacement polynomial functions.

7, 7 7, 7 $N_{\bar{u}}, M_{\bar{u}}$ 6, 7 7, 6 7, 7 6, 7 7, 6 7, 6 $N_{\bar{v}}, M_{\bar{v}}$ 6, 7 6, 7 7, 6 7, 6 7, 6 7, 7 7, 8 8, 7 8, 8 8, 7 8, 8 $N_{\bar{w}}, M_{\bar{w}}$ 8, 8 7, 6 49/49/42 49/49/56 49/49/63 56/56/56 56/56/63 $\delta_{\bar{x}}$ Terms 48/48/54 48/48/63 δ_{θ} λ_i 8.3790 0.001.001 8.3739 8.3732 8.3771 8.3764 8.3740 8.3724 2 17.84317.84217.86217.85617.85517.84017.8393 30.678 30.565 30.486 30.823 30.820 30.542 30.468 4 34.959 34.734 34.946 35.137 34.961 34.922 34.642 5 48.70948.66945.486 45.363 $45 \cdot 258$ 45.092 45.0586 60.533 60.454 60.638 59.439 58.959 58.466 58·198 7 87.954 87.766 69.762 70.632 69.956 69·842 69.692 8 89.121 88·824 86.908 85.112 84·385 84·575 83·758 9 104.81 104.54 103.03 102.09 101.87 101.59101.1510 129.05 131.20 114.49111.71111.33 111.31 110.581.00 0.00 λ_i 4.8145 $4 \cdot 8174$ 4.8137 1 4.81804·8136 4·8113 4.81122 17.84117.816 17.72317.71517.71417.70917.7093 28.425 28.388 28.292 28·255 28.255 28·253 28.253 4 45.730 45.702 45.701 46.312 46.283 45.690 45.690 5 58.938 58.734 57.804 57.784 57.783 57.760 57.759 6 66.551 64·984 64·938 64·936 64.863 64·862 66·224 7 80.711 79.195 78.457 78.456 78.376 78.375 80.190 8 91.113 90.457 86.226 85.681 85.677 85.518 85.517 9 99.229 103.16 102.97 99.656 99.402 99.396 99·231 122.91 10 123.16 108.07 108.06 107.12107.11108.41

Convergence of λ with the maximum powers of \bar{x} and θ in \bar{u} , \bar{v} and \bar{w} $(l/b = 2, b/h_0 = 25, \Omega_1 = 60^\circ, \Omega_2 = 90^\circ, K = 60^\circ, \phi = 0^\circ)$

VIBRATION OF TWISTED AND CURVED CYLINDRICAL PANELS

It is known that there is a good rate of convergence for the first ten frequency parameters λ in the case of (7, 7; 7, 7; 8, 8) or (56/56/63), which is used for analyzing vibrations of twisted and curved cylindrical panels with variable thickness in this paper.

4.2. COMPARISON WITH AVAILABLE RESULTS

A cantilevered cylindrical panel with linear chordwise taper was studied by experimental and theoretical methods [10, 12, 26–28]. Although there were no twist and curvature in the

Frequencies (Hz) of a cantilevered cylindrical panel with chordwise taper ($a = 12$ in, $b = 12$	in,
$h_0 = 0.048 \text{ in}, R_y = 30 \text{ in}, \delta_x = 1.0, \delta_y = 3.4375$	

f_i	Present	FEM [27]	FEM [28]	Exp. [26,27]	Reference [10]	Reference [12]
1	77.880	78·855	78.99	76.4	78.296	77.066
2	113.59	114.10	114.5	108	113.95	111.26
3	206.74	211.55	210.8	202	210.37	206.23
4	250.36	258.09	263.0	253	254.86	247.57
5	364.56	370.60	373.8	364	368.21	360.61
6	440.42	452.32	454.6	426	465.53	439.46
7	453.61	480.52	496.8	465	499.68	449.38
8	572·21	581.32	587.3	572	586.03	564.86
9	675·21	690·11	695.6	677	730.28	669.66
10	707.52	755·03	779.2	692	757.44	691.34

TABLE 3

Comparison of λ for the panel with taper thickness (v = 0.3, a/b = 1.0, $b/h_0 = 100$, $b/R_v = 0.5$)

			No. of vibration mode							
$\delta_{ar{x}}$	$\delta_{ heta}$	Method	1	2	3	4	5	6	7	8
0.00	1.0	Reference [12]	13·274	13·423	25·044 25·108	28·117 28·383	34·848 34·889	38·253 38·500	41·873	42.403
0.25		Reference [12] Present	11·137 11·240	13·410 13·325	30·788 30·456	32·371 32·645	33·457 33·646	35·915 35·844	51.078	61·259
0.50		Reference [12] Present	10·474 10·551	$15 \cdot 280$ $15 \cdot 213$	29·674 29·910	37·583 37·513	37·587 37·763	42·701 41·855	72·960 72·797	73·930 73·821
0.75		Reference [12] Present	10·393 10·440	16·592 16·651	29·244 29·205	39·894 40·089	42.666 42.528	54·195 53·053	82.688 82.654	82·957 82·995
1.00		Reference [12] Present	10.588 10.612	16·978 17·181	30.640 30.332	42·205 42·384	47·662 47·498	65·439 64·023	89·715 89·709	89·939 90·135
1.0	0.0	Reference [12] Present	8·1412 8·1875	12·216 12·267	19·456 19·529	20·429 20·481	28·717 28·941	29·560 29·517	36·373 36·991	36·781 37·769
	0.5	Reference [12] Present	9·0505 9·1026	14·842 14·876	25·984 25·983	32·712 32·688	40·679 40·705	48·854 47·875	61·270 61·137	74·749 74·056
	1.0	Reference [12] Present	10·588 10·612	16·978 17·181	30·640 30·332	42·205 42·384	47·662 47·498	65·439 64·023	89·715 89·709	89·939 90·135
	1.5	Reference [12] Present	12·496 12·490	18·105 18·414	35·985 35·421	47·240 47·299	57·791 57·739	80·947 79·179	94·829 94·874	99·532 99·653
	2.0	Reference [12] Present	14·638 14·605	18·774 19·130	41·758 41·001	51·670 51·606	67·462 67·566	95·593 93·596	100·24 99·963	105·85 105·61

lengthwise direction, it may be a good example to prove the present numerical procedure. Its material characteristic coefficients are given as follows: Young's modulus $E = 30 \times 10^7 \text{ lb/in}^2$, the Poisson ratio v = 0.3 and a specific weight $\rho = 0.284 \text{ lb/in}^3$, and geometric parameters cited from the reference are listed in Table 2.

The results obtained by various methods are shown in Table 2 where there are finite element methods with triangular shallow shell elements (125 degrees of freedom (d.o.f.)) and helicoidal shell elements (205 d.o.f.), and the methods based on shallow shell theory by Ritz principle. The present procedure using the principle of virtual work and the Rayleigh-Ritz method is based on general shell theory. It is certain that there are errors in both experiment and theoretical analyses, such as measuring errors of the frequencies and ideal boundary

Effect of δ_{θ} on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 30^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\bar{x}} = 1.00$)

				No. of	vibration	mode			
Κ	$\delta_{ heta}$	1	2	3	4	5	6	7	8
0°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\\ 0.00\\ \end{array}$	5.2726 5.9768 6.2013 6.3497 6.5046 6.6890 6.9085 4.5177	13·239 12·132 12·565 13·661 15·150 16·900 18·831 15·067	26·543 27·396 29·586 31·830 33·950 35·996 38·040 29·266	36·330 39·215 43·163 47·579 52·501 57·810 63·376 35·065	42.091 47.517 57.560 67.249 71.358 71.192 70.824 48.622	52·425 57·817 57·740 71·284 76·559 84·874 92·681 53·845	54.944 69.307 73.963 82.575 93.667 105.02 116.42 59.490	63.899 70.618 89.660 100.20 107.43 115.25 123.71 66.607
	$\begin{array}{c} 0.25 \\ 0.50 \\ 0.75 \\ 1.00 \\ 1.25 \\ 1.50 \end{array}$	4·9230 5·2059 5·4948 5·7915 6·0958 6·4108	14·335 14·643 15·552 16·878 18·505 20·351	32.007 33.256 34.347 35.508 36.797 38.230	35·128 39·343 44·556 50·224 56·082 61·854	53.513 62.793 69.855 72.495 73.214 73.669	59·498 71·000 78·190 84·065 90·568 96·781	71.834 75.244 82.654 94.032 105.40 116.77	72.966 86.240 95.246 103.60 112.60 122.21
30°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	3.8046 4.0174 4.2745 4.6002 4.9677 5.3568 5.7578	16.522 16.417 16.994 18.027 19.392 21.015 22.839	27·366 29·234 30·739 32·001 33·147 34·278 35·448	41.044 40.793 43.825 48.278 53.590 59.391 65.379	55.071 60.460 67.981 72.528 74.940 76.687 77.488	58·327 62·965 73·684 84·267 93·105 98·571 103·09	63.688 70.928 79.506 88.552 97.325 107.56 118.45	70·418 79·378 87·521 94·078 102·70 113·24 124·11
45°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	3·3679 3·5020 3·7344 4·0557 4·4345 4·8467 5·2790	15.184 15.610 16.556 17.865 19.423 21.172 23.073	29.155 30.144 31.274 32.306 33.259 34.181 35.106	43·428 43·668 46·435 50·599 55·692 61·425 67·592	56.549 63.673 71.748 75.934 78.657 80.605 82.078	66·072 69·705 76·741 86·557 96·357 104·94 111·07	68·296 72·988 83·276 94·158 105·48 114·30 122·35	81·377 89·662 97·960 103·74 108·64 116·94 128·30
60°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	3.1007 3.2017 3.4195 3.7324 4.1089 4.5251 4.9661	13.013 13.529 14.515 15.834 17.371 19.055 20.843	32·204 32·855 34·081 35·185 36·175 37·103 38·017	41·847 42·798 45·573 49·589 54·461 59·935 65·820	58·442 66·275 74·956 79·944 83·521 86·298 88·505	72·389 74·273 79·415 88·481 98·195 107·59 116·18	74·472 79·892 89·884 99·776 110·09 120·80 130·52	91.587 100.84 109.42 116.03 121.30 126.19 132.76

conditions in experiment, and the calculation errors, the errors of geometric parameters and the errors led by the assumptions in theoretical analysis. Selecting the experimental results as a reference for judging, the present results are better, the maximum and minimum discrepancies are +4.92% and -2.51%, respectively, and the average error is only +1.13%, which are mainly caused by the geometric parameters, because the different geometric parameters are used to represent the panel and it is necessary to transform before the vibration of the panel is analyzed by the present procedure. It is not observed that the error becomes largely for the higher vibration modes, which means that the present numerical procedure has good stability.

I	ABLE	5
I	ABLE	2

Effect of δ_{θ} on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 60^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\bar{x}} = 1.00$)

				No. of	vibration	mode			
Κ	$\delta_{ heta}$	1	2	3	4	5	6	7	8
0°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	8.5470 9.8207 10.517 10.932 11.141 11.262 11.363	14·776 13·737 13·755 14·470 15·720 17·315 19·131	33.755 34.293 38.038 42.140 46.225 50.076 53.538	48.133 54.030 59.377 62.783 65.652 68.411 69.716	49·470 56·313 65·133 68·643 69·891 70·511 72·669	53·298 58·890 68·365 79·730 90·755 101·50 111·99	62·149 70·067 76·339 84·989 95·285 106·02 116·85	65·218 83·956 103·17 116·26 128·65 139·30 146·68
15°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	6.8754 7.6167 8.2127 8.7900 9.3162 9.7676 10.147	17·409 16·700 16·729 17·251 18·175 19·444 20·997	37·461 38·319 42·196 46·681 51·290 54·998 56·760	44.813 50.020 52.967 54.826 56.377 58.731 62.817	52·507 58·000 67·090 72·448 74·485 75·494 76·458	53.658 59.685 70.881 81.874 92.760 103.61 114.41	66.038 75.137 80.242 87.594 97.539 108.13 118.74	71·342 87·826 103·70 117·28 130·72 139·67 144·39
30°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	5.5532 6.0379 6.5186 7.0493 7.6007 8.1417 8.6528	19·178 18·797 19·122 19·864 20·894 22·163 23·640	36·202 39·495 42·955 46·095 48·190 49·433 50·307	46·372 47·608 49·689 52·132 55·783 60·464 65·635	54.759 60.234 69.911 76.830 80.055 81.571 82.554	58·256 63·637 73·826 84·027 94·502 105·17 115·92	72.146 80.131 85.854 92.638 101.98 112.35 122.87	75.712 90.664 105.15 117.67 128.26 135.45 140.57
45°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	4.6503 4.9924 5.3951 5.8731 6.3985 6.9425 7.4836	18·266 18·575 19·430 20·608 21·970 23·465 25·074	35·485 38·313 40·547 42·234 43·490 44·461 45·268	48.904 49.040 51.190 54.446 58.530 63.234 68.386	57.540 63.720 73.617 81.373 85.534 87.731 89.100	63·375 67·878 76·973 86·228 96·298 106·71 117·25	$\begin{array}{c} 75 \cdot 505 \\ 83 \cdot 060 \\ 89 \cdot 983 \\ 97 \cdot 200 \\ 106 \cdot 24 \\ 116 \cdot 34 \\ 126 \cdot 77 \end{array}$	82·420 95·187 109·41 119·91 128·43 134·88 139·88
60°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	4.0439 4.3013 4.6521 5.0892 5.5845 6.1111 6.6488	15·703 16·446 17·627 19·085 20·686 22·362 24·086	37.159 39.053 40.638 41.811 42.734 43.513 44.216	47·426 48·218 50·845 54·498 58·778 63·521 68·632	60·091 67·195 77·137 85·596 90·056 92·954 94·994	69·670 73·409 80·589 87·937 97·732 107·90 118·18	80·173 86·427 93·863 101·82 110·66 120·17 130·06	89.581 99.953 113.90 124.25 132.19 138.49 143.55

In reference [12], cantilevered rectangular shallow shells with variable thickness were studied, a large amount of data about the effects of variation ratios of thickness in two directions and other geometric parameters on the vibration characteristics were proposed, the shells having $b/R_y = 0.5$, which is the largest curvature in the reference, are analyzed by the present numerical procedure. The comparisons are shown in Table 3 where the parameters [12] are listed in order to comprehend easily, it is noted that they are different from the ones in this paper and need to transform. Good agreement can be seen between the first eight frequency parameters ($\lambda = \omega ab \sqrt{\rho h_0/D_0}$) obtained by the two methods for the panels with variable thickness whether in a lengthwise or in a chordwise direction, even in the extreme cases of $\delta_{\bar{x}} = 0.00$ and $\delta_{\theta} = 0.0$, and the maximum discrepancy is < +3%.

]	ABLE	6

Effect of δ_{θ} on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 90^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\bar{x}} = 1.00$)

				No. of	vibration	mode			
Κ	$\delta_{ heta}$	1	2	3	4	5	6	7	8
0°	0.00	10.689	17.024	37.038	50.775	52.598	60.120	64·915	73.360
	0.25	11.717	16.835	38.460	54.443	60.653	68.365	74.835	96.264
	0.50	12.691	16.771	42.760	61.025	70.784	76.807	83.328	113.27
	0.75	13.798	16.802	47.248	65.158	80.118	81.936	94.187	123.02
	1.00	14.853	1/.124	56 216	6/.330	84.40/	90.959	105.25	133.45
	1.20	15.720	10.508	50.310 60.776	68.083	87.288 80.700	101.10	126.62	144.38
	1.20	15.720	19.398	00.770	08.985	09.199	111.39	120.03	130.11
15°	0.00	8.7267	19.654	40.297	50.001	54·002	58·026	70.119	78.673
	0.25	9.6058	19.294	41.843	54.832	59.187	67.430	80.119	99.568
	0.50	10.467	19.237	46.021	59.800	69·189	77.118	87.460	112.09
	0.75	11.377	19.460	50.469	62·800	78.423	83.832	96.153	123.54
	1.00	12.268	19.976	55.100	64.449	83.900	91.749	106.32	135.12
	1.25	13.058	20.813	59·865	65.323	86.485	101.29	116.90	146.82
	1.20	15.702	21.975	04.007	03.802	88.3//	111.92	127.49	138.00
30°	0.00	7.1852	21.251	41.267	49.873	55.588	61.250	74·221	82.755
	0.25	7.8951	20.948	44·107	53.457	60.455	68·855	82.892	99.566
	0.50	8.6196	21.111	48.109	57.438	69.749	78.028	90.401	113.21
	0.75	9.3936	21.620	52·238	59.653	78.456	86.156	97.871	126.43
	1.00	10.181	22.385	56·224	61.283	84.816	94·052	107.08	138.87
	1.25	10.943	23.3/1	59·01/	63.866	88.327	103.21	11/.34	150.73
	1.20	11.04/	24.300	60.117	68.091	90.438	113.07	127.90	162.44
45°	0.00	6.0290	20.647	40.744	53.836	57.375	63.373	76.637	87.654
	0.25	6.5934	20.861	44·241	55·231	62.474	68.961	85.446	102.68
	0.50	7.2079	21.492	47.841	57.411	71.411	78.104	93.813	117.08
	0.75	7.8821	22.436	50.842	59.436	80.047	87.105	100.75	131.25
	1.00	8.5892	23.568	52.964	62·200	87.098	95.607	108.78	143.88
	1.25	9.3014	24.833	54.232	65·910	91.640	104.59	118.24	155.16
	1.20	9.9934	20.209	34.973	/0.310	94.421	114.19	128.38	103.39
60°	0.00	5.1774	18·229	42·071	54·037	58·916	66.569	82.496	92.936
	0.25	5.6279	19.016	45·031	55.034	64·473	70.847	90.291	106.12
	0.50	6.1582	20.129	47.834	56.574	73.561	79.455	98.329	121.49
	0.75	6.7585	21.487	49.730	59.108	82.302	88.006	104.98	137.41
	1.00	7.4026	22.976	50.881	62·511	89.832	96.393	112.21	149.70
	1.25	8.0672	24.531	51.616	66.523	95.158	105.31	120.62	159.18
	1.20	8.7330	26.123	52.145	/0.964	98.647	114.81	129.91	167.33

Generally, it is effective and practicable to analyze the free vibrations of the cylindrical panels with variable thickness for the present numerical procedure.

4.3. EFFECTS AND DISCUSSIONS

As it is known that the study on the vibrations of twisted and curved cylindrical panels with variable thickness and the effects on it are void herein, the effects of twist, curvature in chordwise and lengthwise directions, a variation ratio of thickness also in the two directions aforementioned on the vibration characteristics are studied in detail in order to provide data for applications and researches.

]	ABLE	7

Effect of $\delta_{\bar{x}}$ on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 30^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\theta} = 1.00$)

				No. of	vibration	mode			
Κ	$\delta_{ar{x}}$	1	2	3	4	5	6	7	8
0°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	11.668 8.9876 7.7210 6.9875 6.5046 6.1599 5.9003	13·357 12·627 13·577 14·424 15·150 15·793 16·377	24·258 27·283 30·639 32·677 33·950 34·949 35·862	29·071 39·096 43·064 47·429 52·501 57·739 62·929	40.159 43.757 59.229 69.688 71.358 67.364 64.154	43·366 53·186 62·963 74·444 76·559 82·501 88·038	49·776 72·459 84·880 80·429 93·667 108·46 122·22	57·304 82·590 88·773 98·069 107·43 117·20 127·40
15°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	9.5042 7.3755 6.5753 6.1067 5.7915 5.5621 5.3864	15.518 14.671 15.505 16.251 16.878 17.428 17.928	26·421 31·951 34·950 35·298 35·508 35·808 36·193	30.042 34.547 38.814 44.560 50.224 55.553 60.170	44.643 47.997 62.516 73.168 72.495 69.532 67.461	48·288 57·934 66·891 78·297 84·065 88·965 93·858	48.845 68.944 83.584 82.196 94.032 108.29 120.45	59·565 85·694 89·484 94·655 103·60 113·68 125·40
30°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	7.6240 5.9621 5.4379 5.1527 4.9677 4.8362 4.7371	16.852 16.535 17.699 18.649 19.392 19.996 20.509	27.849 32.751 33.390 33.284 33.147 33.095 33.130	34·248 35·926 42·141 48·034 53·590 58·830 63·729	42.638 52.385 66.182 75.050 74.940 73.255 71.604	53.737 63.329 71.451 81.504 93.105 97.459 101.28	57.694 71.995 83.221 90.015 97.326 109.67 120.15	66·319 88·612 97·195 96·341 102·70 113·15 126·01
45°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	6.6711 5.2213 4.7924 4.5715 4.4345 4.3408 4.2729	16.032 16.059 17.364 18.483 19.423 20.228 20.930	29.433 33.575 33.959 33.718 33.259 32.810 32.434	35.070 37.476 44.302 50.207 55.692 60.839 65.687	45.736 58.077 69.497 77.118 78.657 78.265 77.433	57.176 66.101 74.718 84.552 96.357 105.33 109.94	67·372 78·716 88·496 96·260 105·48 113·43 122·27	74·972 92·444 104·87 106·38 108·64 116·82 128·77
60°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	6.1531 4.8171 4.4263 4.2291 4.1089 4.0285 3.9715	14.761 14.558 15.603 16.543 17.371 18.106 18.769	28.061 34.124 36.101 36.447 36.175 35.717 35.244	38·248 38·485 43·997 49·399 54·461 59·197 63·607	46·489 63·040 73·697 80·214 83·521 84·630 84·891	61.596 68.259 76.264 86.952 98.195 109.02 117.45	76·438 85·318 95·385 102·37 110·09 118·18 125·67	82·857 96·642 111·12 117·83 121·30 125·99 134·09

Tables 4–6 and 7–9 correspond to the cases of $\delta_{\bar{x}} = 1.00$ and $\delta_{\theta} = 1.00$, respectively, where the central angle ($\Omega_1 = 30, 60^\circ, 90^\circ$), the twist angle at the free end ($K = 0^\circ - 60^\circ$ step 15°), the variation ratio of thickness ($\delta_{\bar{x}}$ or $\delta_{\theta} = 0.00 - 1.50$ step 0.25) in a direction and the other given geometric parameters are considered and their effects on vibration characteristics are studied.

In the case of $\delta_{\bar{x}} = 1.00$, or the panels having variable thickness in the chordwise direction, almost the frequency parameters λ corresponding to vibration modes decrease with decreasing parameter δ_{θ} and the variations of the higher λ are greater than those of the lower λ , which leads the region of the first eight frequency parameters λ distribution to

Effect of $\delta_{\bar{x}}$ on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 60^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\theta} = 1.00$)

				No. of	vibration	mode			
Κ	$\delta_{ar{x}}$	1	2	3	4	5	6	7	8
0°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	14·444 13·246 13·291 12·032 11·141 10·486 9·9820	19.651 15.578 14.139 14.951 15.720 16.401 17.013	30·326 33·647 37·685 42·151 46·225 49·532 51·976	33.508 41.290 57.949 64.034 65.652 66.050 63.306	47.650 58.554 62.390 71.134 69.891 68.270 71.016	50·206 65·632 75·056 79·376 90·755 100·63 108·48	65·953 85·357 84·350 86·066 95·285 108·05 121·82	67.812 92.257 102.96 116.03 128.65 139.44 148.52
15°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	13.067 11.001 10.314 9.7603 9.3162 8.9608 8.6716	20·610 17·390 17·181 17·640 18·175 18·684 19·159	29.008 35.702 41.148 46.337 51.290 54.073 53.740	36·521 42·597 54·852 56·740 56·377 57·686 61·369	48·339 60·138 63·156 74·415 74·485 72·201 71·071	56·111 68·630 76·555 80·741 92·760 105·71 113·79	66·528 78·088 90·485 90·142 97·539 107·30 121·12	70.863 94.570 96.531 114.23 130.72 140.72 146.54
30°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	10.776 8.7901 8.2085 7.8537 7.6007 7.4090 7.2576	21.712 19.104 19.490 20.232 20.894 21.445 21.913	28.002 36.011 43.274 47.519 48.190 47.552 46.781	42.647 46.542 50.881 52.114 55.783 60.563 65.375	46.532 59.455 66.279 78.271 80.055 78.212 76.543	62·934 68·910 77·714 83·191 94·502 107·73 118·14	69·770 78·548 91·488 94·847 101·98 111·23 122·83	73.158 97.766 103.27 115.31 128.26 136.06 141.24
45°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	9.1230 7.3245 6.8306 6.5681 6.3985 6.2793 6.1912	19.613 18.842 19.918 21.032 21.970 22.734 23.364	30·377 37·522 43·468 44·171 43·490 42·648 41·861	43.914 46.773 48.948 53.510 58.530 63.440 68.182	48.179 58.070 69.603 82.056 85.534 84.569 83.309	65·325 74·488 80·401 85·722 96·298 108·83 119·76	71.798 83.250 93.630 99.023 106.24 115.75 126.91	78·236 97·457 113·56 120·37 128·43 134·24 138·49
60°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	8.0064 6.3709 5.9316 5.7151 5.5845 5.4984 5.4390	17·352 17·241 18·520 19·690 20·686 21·526 22·242	30.608 39.187 43.671 43.439 42.734 41.899 41.094	44.013 43.428 47.451 53.524 58.778 63.644 68.203	49.871 61.719 73.199 85.118 90.056 90.281 89.848	66.818 80.126 83.495 88.040 97.732 109.95 120.97	77.056 86.733 96.906 103.57 110.66 119.30 129.32	85·857 97·006 118·47 126·37 132·19 137·36 141·64

decrease greatly. It means that the stiffness of the twisted and curved panel decreases with decreasing parameter δ_{θ} or the thickness of the panel thinning in the chordwise direction. With increasing the central angle Ω_1 the frequency parameters λ increase, which is greater for the lower λ than for the higher one, or the λ increases with decreasing radius r of the reference surface because the Ω_1 is inversely proportional to the r when the length of arc b is constant. The first λ decreases monotonically with increasing twist angle and the second λ tends to decrease with decreasing twist angle, which does not change for different Ω_1 and δ_{θ} . The effects of the K on the other λ are complicated. Figure 2 shows the vibration mode shapes of the panels whose geometric parameters are $\Omega_1 = 60^\circ$, $\Omega_2 = 30^\circ$, $K = 0^\circ$ and 30°

TABLE	9
LUDLL	_

Effect of $\delta_{\bar{x}}$ on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 90^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\theta} = 1.00$)

		No. of vibration mode									
Κ	$\delta_{ar{x}}$	1	2	3	4	5	6	7	8		
0°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	16·252 14·159 14·472 14·962 14·853 14·285 13·700	24·227 21·434 18·888 17·447 17·124 17·496 18·011	36.641 38.880 42.922 47.260 51.783 56.197 60.301	37·464 41·863 56·556 67·452 67·336 64·788 62·305	50·444 64·520 72·106 78·044 84·467 85·530 86·657	58·148 75·447 83·508 83·807 90·959 105·17 118·71	72.532 91.678 91.650 97.235 105.25 113.21 121.31	76·161 100·55 114·75 123·33 133·45 144·56 156·07		
15°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	15.213 12.961 12.724 12.545 12.268 11.960 11.666	25·278 21·879 20·230 19·846 19·976 20·283 20·642	32.800 37.832 45.143 50.197 55.100 59.951 59.720	41·990 46·483 58·974 66·843 64·449 61·971 64·667	49.890 64.957 68.061 73.867 83.900 84.565 84.398	64·518 77·661 85·312 87·384 91·749 104·90 118·21	72.108 90.783 95.705 99.126 106.32 114.45 123.03	77.006 96.746 108.14 121.42 135.12 147.99 160.11		
30°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	13.215 11.070 10.651 10.401 10.181 9.9864 9.8164	27.756 22.775 21.808 21.962 22.385 22.830 23.241	28·913 36·766 46·167 52·061 56·224 56·582 55·063	47.339 51.706 60.903 62.813 61.283 63.568 67.963	48.771 68.058 67.939 75.719 84.816 86.274 85.998	69.882 75.428 82.704 88.512 94.052 105.63 117.73	72.612 84.250 94.629 99.724 107.08 115.97 125.66	82·148 98·220 112·64 124·65 138·87 152·44 165·05		
45°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	11·429 9·4293 8·9849 8·7545 8·5892 8·4603 8·3572	23.834 22.044 22.135 22.813 23.568 24.240 24.808	32·205 37·577 46·741 51·998 52·964 51·860 50·506	45.868 56.950 60.676 60.251 62.200 66.086 70.334	53.726 65.001 70.180 79.175 87.098 89.336 89.634	70·271 73·316 78·776 87·409 95·607 106·65 117·81	79·215 87·475 97·756 102·56 108·78 117·60 127·82	87.516 98.891 118.75 130.70 143.88 156.44 168.05		
60°	$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\end{array}$	10.025 8.1677 7.7346 7.5307 7.4026 7.3129 7.2475	20·484 20·022 20·960 22·001 22·976 23·816 24·521	33·461 39·431 48·053 51·638 50·881 49·509 48·207	45.116 56.244 56.454 58.188 62.511 66.949 71.193	59.175 62.360 73.154 82.604 89.832 92.603 93.541	66·996 78·559 80·245 87·450 96·393 107·35 118·06	86·780 91·749 101·87 106·67 112·21 120·22 130·01	89.867 98.459 122.12 137.58 149.70 159.32 167.12		

and $\delta_{\theta} = 0.00-1.00$. It is seen that the distribution of contour lines on the panels is uniform for the first and second vibration modes even in the case of $\delta_{\theta} = 0.00$, but the contour lines of the higher ones scatter on the local zone as $\delta_{\theta} = 0.00$, which means that there are abrupt changes in the transverse displacements on the panels. It is found that modes do not exchange with each other as the δ_{θ} changes.

Figure 2. Effect of δ_{θ} on vibration mode shapes of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 60^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_{\bar{x}} = 1.00$).

In the case of $\delta_{\theta} = 1.00$, or when the panels have variable thickness in the lengthwise direction, although the same effect of the parameter $\delta_{\bar{x}}$ on the region of the first eight frequency parameters λ distribution as that of the parameter δ_{θ} is found, there are different phenomena for λ observed from those aforementioned. Only the first frequency parameter λ increases as the $\delta_{\bar{x}}$ decreases and the largest first λ occurs when the thickness at the free end is equal to zero, which can be explained from the mode shapes shown in Figure 3, the

Figure 3. Effect of δ_x on vibration mode shapes of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 60^\circ$, $\Omega_2 = 30^\circ$, $\phi = 0^\circ$, $\delta_\theta = 1.00$).

first vibration mode is a bending mode for twisted and curved cylindrical panels with $\delta_{\bar{x}} = 1.00$, but it changes to a vibration mode which is similar to a torsion mode with decreasing $\delta_{\bar{x}}$. The higher frequency parameters λ decrease with the thickness thinning. The frequency parameters λ tend towards an increase of the central angle Ω_1 or a decrease of the radius *r*. The same effects of the twist angle occur on the first frequency parameter λ aforementioned. From the given mode shapes, it can also be seen that the adjacent modes exchange with each other as the $\delta_{\bar{x}}$ varies in the case of $K = 0^{\circ}$, for instance, the first and second modes in $\delta_{\bar{x}} = 0.25$ become the second and first modes in $\delta_{\bar{x}} = 0.50$, but it is not obvious for the higher modes and for the modes of the twisted panels. In the extreme case of $\delta_{\bar{x}} = 0.00$, the contour lines concentrate on the free ends except the first mode.

The effect of the curvature 1/R in the lengthwise direction on the frequency parameters λ of the panels with $\Omega_1 = 60^\circ$, $K = 0^\circ$, $\phi = 0^\circ$ and the different variation ratios of thickness $\delta_{\bar{x}}$ and δ_{θ} are shown in Table 10. As it is known there is a linear relation between the

Effect of Ω_2 on frequency parameters λ of cylindrical panels (l/b = 2, $b/h_0 = 25$, $\Omega_1 = 60^\circ$, $K = 0^\circ$, $\phi = 0^\circ$)

			No. of vibration mode							
Ω_2	$\delta_{ar{x}}$	$\delta_{ heta}$	1	2	3	4	5	6	7	8
30°	1.00	0.00 0.25 0.50 0.75 1.00	8.5470 9.8207 10.517 10.932 11.141	14·776 13·737 13·755 14·470 15·720	33.755 34.293 38.038 42.140 46.225	48·133 54·030 59·377 62·783 65·652	49·470 56·313 65·133 68·643 69·891	53·298 58·890 68·365 79·730 90·755	62·149 70·067 76·339 84·989 95·285	65·218 83·956 103·17 116·26 128·65
60°	1.00	0.00 0.25 0.50 0.75 1.00	8.7343 9.6869 10.248 10.613 10.848	16·246 14·985 15·060 15·673 16·693	30·873 31·076 34·181 37·541 40·889	43·335 48·519 57·153 62·578 65·099	51·245 54·985 61·971 69·345 75·538	57·510 66·007 71·121 75·668 82·052	60·389 71·346 80·439 89·489 99·150	63·787 74·249 93·404 112·13 129·58
90°	1.00	0.00 0.25 0.50 0.75 1.00	9·2713 9·7743 10·151 10·422 10·630	17·913 16·480 16·657 17·236 18·083	29·041 28·938 31·743 34·696 37·660	39·843 43·308 50·236 56·150 59·939	49·833 53·022 58·801 64·103 70·177	57·126 66·882 80·284 85·884 90·458	62·190 71·650 82·394 94·987 104·88	69·941 78·317 86·222 98·551 113·71
30°	0.00 0.25 0.50 0.75 1.00	1.00	14·444 13·246 13·291 12·032 11·141	19·651 15·578 14·139 14·951 15·720	30·326 33·647 37·685 42·151 46·225	33·508 41·290 57·949 64·034 65·652	47.650 58.554 62.390 71.134 69.891	50·206 65·632 75·056 79·376 90·755	65·953 85·357 84·350 86·066 95·285	67·812 92·257 102·96 116·03 128·65
60°	0.00 0.25 0.50 0.75 1.00	1.00	14·973 14·022 12·859 11·658 10·848	19·430 14·981 14·957 15·884 16·693	27·978 29·793 33·533 37·383 40·889	32·471 42·351 58·035 65·933 65·099	44·514 54·992 63·885 71·021 75·538	49·594 68·371 72·557 75·800 82·052	64·876 80·616 81·674 86·954 99·150	69·353 87·463 104·45 117·69 129·58
90°	0.00 0.25 0.50 0.75 1.00	1.00	15·415 14·228 12·439 11·351 10·630	19·319 15·360 16·242 17·243 18·083	25.627 27.095 30.663 34.290 37.660	32·921 43·891 54·702 59·342 59·939	39·299 47·505 58·028 64·767 70·177	50·975 73·712 79·387 87·344 90·458	60·753 76·130 84·567 90·741 104·88	69·109 79·209 90·966 103·38 113·71

Figure 4. Effect of Ω_2 on vibration mode shapes of cylindrical panels $(l/b = 2, b/h_0 = 25, \Omega_1 = 60^\circ, K = 0^\circ, \phi = 0^\circ)$.

curvature 1/R and the Ω_2 , or $\Omega_2 = (1/R)l$, so the change in the Ω_2 is used to represent the variation of the curvature. Under the different Ω_2 , the first frequency parameter λ always increases with increasing parameter δ_{θ} and decreases with increasing parameter $\delta_{\bar{x}}$, the other frequency parameters λ tend to increase with parameters δ_x and δ_{θ} increasing except the second λ in the extreme conditions of zero thickness at the free end. The effect of the Ω_2 on the frequency parameters λ can be observed from the table. In general, the variations of the λ are not great and have no simple relations with the Ω_2 . In the case of $\delta_{\bar{x}} = 1.00$, with increasing Ω_2 , the first λ tends towards an increase at $\delta_{\theta} = 0.00$ which changes with the δ_{θ} and shows a decrease at $\delta_{\theta} = 1.00$, and the second λ shows an increase. In the case of $\delta_{\theta} = 1.00$, the same variation of the first λ with the Ω_2 as mentioned before can be seen and the variation of second λ is contrary to it. It is complicated for the higher frequency parameters and those aforementioned become complex for the twisted panels. The part of mode shapes corresponding to Table 10 are given in Figure 4 where the effects of Ω_2 on mode shapes can be seen. It is known that coupled vibrations occur due to the Ω_2 , there is an exchange of the adjacent lower modes with the Ω_2 varying only in the case of $\delta_{\theta} = 1.00$ and the effects on the higher modes are complicated.

5. CONCLUSIONS

The method for analyzing the free vibrations of shells based on general shell theory and using the principle of virtual work and the Rayleigh–Ritz method with two-dimensional algebraic polynomial functions as the displacements has been extended to accommodate twisted and curved cylindrical panels with variable thickness, and it has been verified by comparing the present results with the previous experimental and theoretical results to several shallow cylindrical panels with variable thickness in both chordwise and lengthwise directions, the high accuracy of the solutions applied by the present numerical procedure is also demonstrated.

The effects of the geometric parameters on the vibration characteristics are studied, the first frequency parameter changes monotonically with both the variation ratios of thickness, or the first λ increases with the decrease of $\delta_{\bar{x}}$, in contrast, it decreases with decreasing δ_{θ} . The higher frequency parameters tend towards an increase with increasing parameter $\delta_{\bar{x}}$ and δ_{θ} , the variations are greater than those of the lower ones, which leads the region of the frequency parameters distribution to increase greatly. As the twist angle increases the lower frequency parameters decrease, and the effect of the curvature on the frequency parameters caused by the variation ratio of thickness are the same. A phenomenon in which modes exchange with a variation in the ratio of thickness is observed.

ACKNOWLEDGMENTS

One of the authors (X. X. Hu) is indebted to the Japan Society for the Promotion of Science for providing a fellowship in Nagasaki University, Japan, and thanks Professor T. Tsuiji (Faculty of Engineering, Nagasaki University, Japan) for comments on this research.

REFERENCES

1. A. W. LEISSA 1973 Vibration of Shells (NASA SP-288). Washington, DC: U.S. Government Printing Office.

- 2. M. S. QATU 1992 Shock and Vibration Digest 24, 3–15. Review of shallow shell vibration research.
- 3. K. M. LIEW, C. W. LIM and S. KITIPORNCHAI 1997 *Applied Mechanics Review* 50, 431–444. Vibration of shallow shells: a review with bibliography.
- 4. A. W. LEISSA, J. K. LEE and A. J. WANG 1981 *ASME Paper*, *No.*81-*DET*-127. Vibration of twisted rotating blades.
- 5. A. W. LEISSA, J. K. LEE and A. J. WANG 1982 *Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Power* **104**, 296-302. Rotating blades vibration analysis using shells.
- 6. A. W. LEISSA and M. S. EWING 1983 *Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Power* **105**, 383–392. Comparison of beam and shell theories for the vibrations of thin turbomachineary blades.
- 7. A. W. LEISSA, J. K. LEE and A. J. WANG 1983 *International Journal of Solids and Structures* 19, 411–424. Vibrations of cantilevered doubly-curved shallow shells.
- 8. A. W. LEISSA and Y. NARITA 1984 *Journal of Sound and Vibration* 96, 207–218. Vibrations of completely free shallow shells of rectangular planform.
- 9. Y. NARITA and A. W. LEISSA 1986 *Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics* 53, 647–651. Vibrations of completely free shallow shells of curvilinear planform.
- 10. J. K. LEE, A. W. LEISSA and A. J. WANG 1984 *Transactions of the American Society of Mechanical Engineers, Journal of Engineering for Gas Turbines and Power* **106**, 11–16. Vibration of blades with variable thickness and curvature by shell theory.
- 11. K. M. LIEW and C. W. LIM 1994 *Computer Methods in Applied Mechanics and Engineering* 114, 233–247. Global continuum Ritz formulation for flexural vibration of pretwisted trapezoidal plates with one edge built in.
- K. M. LIEW and C. W. LIM 1994 American Institute of Aeronautics and Astronautics Journal 32, 387–396. Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness.
- 13. K. M. LIEW, C. W. LIM and L. S. ONG 1994 *International Journal of Solids and Structures* **31**, 2463–2476. Vibration of pretwisted cantilever shallow conical shells.
- 14. K. M. LIEW, C. W. LIM and L. S. ONG 1994 *International Journal of Mechanical Sciences* 36, 547–565. Flexural vibration of doubly-tapered cylindrical shallow shells.
- 15. K. M. LIEW, M. K. LIM and C. W. LIM 1995 *Journal of Sound and Vibration* 180, 271–296. Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells.
- 16. K. M. LIEW and C. W. LIM 1996 *Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics* **63**, 587–593. Higher-order theory for vibration of doubly-curved shallow shells.
- 17. K. M. LIEW and C. W. LIM 1995 *Computer Methods in Applied Mechanics and Engineering* 127, 145–162. A Ritz vibration analysis of doubly-curved rectangular shallow shells using a refined first-order theory.
- 18. K. M. LIEW and C. W. LIM 1995 *Journal of Engineering Mechanics, American Society of Civil Engineers*, **121**, 1277–1283. Vibration behavior of doubly curved shallow shells of curvilinear planform.
- 19. C. W. LIM and K. M. LIEW 1994 *Journal of Sound and Vibration* 173, 343–375. A *pb*-2 Ritz formulation for flexural vibration of shallow cylindrical shells of rectangular planform.
- 20. C. W. LIM and K. M. LIEW 1995 *Engineering Structures* **17**, 63–70. Vibratory behaviour of shallow conical shells by a global Ritz formulation.
- C. M. LIM, S. KITIPORNCHAI and K. M. LIEW 1996 Journal of Acoustical Society of America 99, 362–372. Modeling the vibration of a variable thickness ellipsoidal dish with central point clamp or concentric surface clamp.
- 22. T. TSUIJI, K. TAKAGI and T. SUEOKA 1994 *Transaction of the Japan Society of Mechanical Engineers* **60**, 4073–4078. Free vibrations of curved and twisted thin plates (fundamental theory) (in Japanese).
- 23. T. TSUIJI, K. TAKAGI and T. YAMASHITA 1994 *Transaction of the Japan Society of Mechanical Engineers* **60**, 4079–4084. Free vibrations of curved and twisted cantilevered thin plates (analytical and experimental results) (in Japanese).
- T. TSUIJI and T. SUEOKA 1990 Japan Society of Mechanical Engineers International Journal, Series 3, 33, 501–505. Vibration analysis of twisted thin cylindrical panels by using the Rayleigh-Ritz method.
- 25. X. X. HU and T. TSUIJI 1999 *Journal of Sound and Vibration* **219**, 63–88. Free vibration analysis of curved and twisted cylindrical thin panels.

- 26. G. M. LINDBERG, M. D. OLSON and A. C. SARAZIN 1970 NRCC Aeronautics Report LR-500. Finite element dynamic analysis of shallow shell structures.
- 27. M. D. OLSON and G. M. LINDBERG 1971 *Journal of Sound and Vibration* **19**, 299–318. Dynamic analysis of shallow shells with a doubly curved triangular element.
- 28. K. P. WALKER 1978 *Journal of Sound and Vibration* **59**, 35–57. Vibrations of cambered helicoidal fan blades.

APPENDIX A

The quantities in this paper are given as follows:

$$A = 1 - \frac{r}{R}\sin(kx + \phi - \theta) + \frac{e}{R}\sin(kx + \phi), \qquad B = \sqrt{e^2k^2\sin^2\theta + A^2},$$

 $p = -r\cos(kx + \phi - \theta) + e\cos(kx + \phi), \qquad q = \frac{Ar}{R}\cos(kx + \phi - \theta) + e^2k^2\sin\theta\cos\theta,$

$$c_{11} = -\frac{A}{BR}\sin(kx + \phi - \theta) + \frac{Aek^2}{B^3R}p\sin\theta,$$

$$c_{12} = \frac{ek}{BR}\sin\theta\cos(kx + \phi) - \frac{Ak}{B}\cos\theta + \frac{e^2k^3}{B^3R}p\sin^3\theta,$$

$$c_{13} = \frac{k}{B}\sin\theta \left[-\frac{e}{R}\sin(kx + \phi) + A + \frac{e^2k^2}{B^2R}p\sin\theta\cos\theta \right],$$

$$c_{21} = \frac{ek}{Br} \left(-\cos\theta + \frac{1}{B^2}q\sin\theta \right),$$

$$c_{22} = \frac{1}{Br} \left[\frac{r}{R}\cos(kx + \theta - \phi)\sin\theta + A\cos\theta - \frac{A}{B^2}q\sin\theta \right],$$

$$c_{23} = \frac{1}{Br} \left[\frac{r}{R}\cos(kx + \theta - \phi)\cos\theta - A\sin\theta - \frac{A}{B^2}q\cos\theta \right],$$

 $F = B(1 + zp_1), \quad e_1 = e - r\cos\theta, \quad e_2 = e\cos\theta - r, \quad h_1 = A - \frac{e}{R}\sin\theta\cos(kx + \phi - \theta),$

$$h_{2} = \frac{A}{R}\cos(kx + \phi - \theta) + ek^{2}\sin\theta, \qquad h_{3} = A\cos\theta - \frac{r}{R}\sin\theta\cos(kx + \phi - \theta),$$
$$h_{4} = \frac{ek^{2}}{B^{2}R}p\sin\theta - \frac{1}{R}\sin(kx + \phi - \theta), \qquad p_{1} = \frac{1}{B}\left(\frac{A}{r} + h_{4} + \frac{ek^{2}}{B^{2}r}h_{3}e_{2}\right).$$

APPENDIX B

The non-zero elements in three matrices G_{x1} , $G_{\theta 1}$ and $G_{x\theta}$ are as follows:

$${}_{x1}G_{1,1} = B, \qquad {}_{x1}G_{1,2} = -\frac{Bk}{r}e_2, \qquad {}_{x1}G_{1,3} = \frac{Ak}{BR}p, \qquad {}_{x1}G_{1,6} = \frac{1}{Br}q,$$
$${}_{x1}G_{1,12} = h_4 + \frac{ek^2}{B^2r}h_3e_2, \qquad {}_{x1}G_{2,1} = \frac{A}{r} + h_4, \qquad {}_{x1}G_{2,2} = \frac{k}{r}(h_1 - h_4e_2),$$

$$\begin{split} & _{x1}G_{2,3} = \frac{k}{R} \bigg[\frac{2ek^2}{B^4r} pqe_2 \sin \theta - \frac{ek^2}{B^2r} pe_2 \cos \theta - \frac{2Aek^2}{B^4R} p^2 \sin \theta - \cos(kx + \phi - \theta) + \frac{A^2}{B^2r} p \\ & - \frac{e^2k^2}{B^2} \sin^2 \theta \cos(kx + \phi - \theta) \bigg], \quad _{x1}G_{2,4} = -\frac{ek}{B^2r} h_3, \quad _{x1}G_{2,5} = \frac{ek^2}{B^4r^2} h_3 e_2, \\ & _{x1}G_{2,6} = \frac{1}{r} \bigg[\frac{A}{B^2} h_2 - \frac{ek^2}{B^2R} e_2 \cos \theta \cos(kx + \phi - \theta) + \frac{2Aek^2}{B^4R} ph_3 - \frac{2ek^2}{B^4r^2} qe_2 h_3 \\ & + \frac{1}{R} \cos(kx + \phi - \theta) \bigg], \quad _{x1}G_{2,7} = -\frac{1}{B}, \quad _{x1}G_{2,8} = -\frac{k^2}{Br^2} e_2^2, \quad _{x1}G_{2,9} = \frac{2k}{Br} e_2, \\ & _{x1}G_{2,10} = \frac{k}{B^3} \bigg(\frac{A}{R} p - \frac{1}{r} qe_2 \bigg), \quad _{x1}G_{2,11} = -\frac{1}{Br} \bigg[-\frac{ek^2e_2}{r} \sin \theta + \frac{Ak^2e_2}{B^2r^2} p \\ & + \frac{1}{B^2r} q(B^2 - k^2e_2^2) \bigg] \bigg] \\ & _{x1}G_{2,12} = \frac{1}{Br} \bigg(Ah_4 - \frac{ek^2}{B^2}h_1 h_3 \bigg), \quad _{x1}G_{3,4} = -\frac{Aek}{B^2r^2}h_3, \\ & _{x1}G_{3,8} = -\frac{ek^2}{B^2r^2}e_2h_1, \quad _{x1}G_{3,9} = \frac{k}{B^2r^2}(Ae_2 - rh_1), \quad _{x1}G_{3,10} = \frac{k}{B^4r}\bigg(\frac{A^2}{R} p + h_1 q \bigg), \\ & _{x1}G_{3,11} = -\frac{1}{r^2} \bigg[\frac{A^2k^2}{B^4R} pe_2 + \frac{1}{R}\cos(kx + \phi - \theta) + \frac{ek^2}{B^2}h_1 \sin \theta + \frac{k^2}{B^4}qe_2h_1 \bigg], \quad _{\theta1}G_{1,2} = \frac{Bk}{P}e_2, \\ & _{\theta1}G_{1,5} = \frac{B}{r}, \quad _{\theta1}G_{1,12} = \frac{A}{r}, \quad _{\theta1}G_{2,1} = \frac{ek^2}{B^2r^2}e_2h_3, \quad _{\theta1}G_{2,2} = \frac{k}{r}(h_4e_2 - h_1), \\ & _{\theta1}G_{2,3} = \frac{e^{2k^3}}{B^2Rr} p\sin^2\theta, \quad _{\theta1}G_{2,4} = \frac{ek}{B^2r}h_3, \quad _{\theta1}G_{2,5} = -\frac{2e^2k^2}{B^2r^2}h_3 \sin \theta, \\ & _{\theta1}G_{3,4} = -\frac{ek^2}{B^2r^2}h_1h_3, \quad _{\theta1}G_{3,4} = \frac{ek}{B^2r}h_3, \quad _{\theta1}G_{2,5} = \frac{1}{r} \bigg(Ah_4 - \frac{ek^2}{B^2}h_1h_3 \bigg), \\ & _{\theta1}G_{3,4} = -\frac{ek^2}{B^2r^2}h_3, \quad _{\theta1}G_{3,4} = \frac{ek}{B^2r}h_3, \quad _{\theta1}G_{2,5} = \frac{1}{r} \bigg(Ah_4 - \frac{ek^2}{B^2}h_1h_3 \bigg), \\ & _{\theta1}G_{3,4} = -\frac{ek^2}{B^2r^2}h_3, \quad _{\theta1}G_{3,5} = \frac{ek^2}{B^2r^2}h_3 \bigg(\frac{1}{B^2}h_2h_3 - h_4 \sin \theta + \frac{1}{R}\sin \theta \sin(kx + \phi - \theta) \bigg], \\ & _{\theta1}G_{3,8} = -\frac{1}{r^2}h_1h_3, \quad _{\theta1}G_{3,9} = -\frac{ek^2}{B^2r^2}h_3 \bigg(\frac{1}{B^2}h_2h_3 - h_4 \sin \theta + \frac{1}{R}\sin \theta \sin(kx + \phi - \theta) \bigg], \\ & _{\theta1}G_{3,8} = -\frac{1}{r^2}h_4, \quad _{\theta1}G_{3,9} = -\frac{ek^2}{B^2r^2}h_3 \bigg(\frac{1}{B^2}h_2h_3 - h_4 \sin \theta + \frac{1}{R}\sin \theta \sin(kx + \phi - \theta) \bigg], \\ & _{\theta1}G_{3,8} = -\frac{1}$$

$$\begin{split} {}_{x\theta}G_{1,4} &= 1, \; {}_{x\theta}G_{1,5} = -\frac{k}{r}e_2, \; {}_{x\theta}G_{1,6} = -\frac{ek}{r}\sin\theta, \; {}_{x\theta}G_{1,12} = -\frac{2ek}{Br}h_3, \; {}_{x\theta}G_{2,1} = \frac{2Ak}{Br}e_2, \\ {}_{x\theta}G_{2,2} &= \frac{2}{Br}(B^2h_4 + k^2e_2h_1), \; {}_{x\theta}G_{2,3} = \frac{2ek^2}{BRr}\Big[\frac{2A}{B^2}ph_3 - e_2\cos(kx+\phi)\Big], \; {}_{x\theta}G_{2,4} = \frac{2A}{Br}, \\ {}_{x\theta}G_{2,5} &= -\frac{2Ak}{Br^2}e_2, \; {}_{x\theta}G_{2,6} = \frac{2ek}{Br}\Big[\frac{1}{R}\sin\theta\sin(kx+\phi-\theta) + \frac{2}{B^2r}h_3q\Big], \; {}_{x\theta}G_{2,8} = \frac{2k}{r^2}e_2, \\ {}_{x\theta}G_{2,9} &= -\frac{2}{r}, \; {}_{x\theta}G_{2,10} = \frac{2}{B^2r}q, \; {}_{x\theta}G_{2,11} = -\frac{2k}{B^2r^2}qe_2, \\ {}_{x\theta}G_{3,3} &= \frac{k^2}{B^2}\Big[\frac{e^2k^2}{B^2r}(1-A)h_3\sin\theta - \frac{e}{R^2r}e_2\sin\theta\cos^2(kx+\phi-\theta) - \frac{2Ae^2k^2}{B^4R^2r}p^2h_3\sin\theta \\ &+ \frac{1}{Rr}ph_1 - \frac{e}{Rr}h_3\cos(kx+\phi-\theta) + \frac{e}{Rr}ph_4\cos\theta - \frac{e}{R}h_4\sin\theta\sin(kx+\phi-\theta) \\ &- \frac{2e}{B^2Rr}pqh_4\sin\theta - \frac{1}{Rr}h_1e_2\cos(kx+\phi-\theta)\Big], \\ {}_{x\theta}G_{3,7} &= -\frac{ek}{B^3r}h_3, \; {}_{x\theta}G_{3,8} = \frac{k}{Br^2}(e_2h_4 - h_1), \; {}_{x\theta}G_{3,9} = \frac{1}{Br}\Big(\frac{ek^2}{B^2r}e_2h_3 - \frac{A}{r} - h_4\Big), \\ {}_{x\theta}G_{3,10} &= \frac{1}{Br}\Big[\frac{1}{R}\cos(kx+\phi-\theta) + \frac{1}{B^2}h_4q + \frac{Aek^2}{B^4R}ph_3\Big], \\ {}_{x\theta}G_{3,11} &= -\frac{k}{Br}\Big[\frac{1}{Rr}e_2\cos(kx+\phi-\theta) + \frac{e}{B^2r}h_2h_3 \\ &+ \frac{ek^2}{B^2R}pe_2\cos\theta - \frac{1}{B^2Rr}qe_2\sin(kx\phi-\theta)\Big]. \end{split}$$